

Improving biopesticide performance: AMBER

Erika Wedgwood

Sacha White Jude Bennison Aoife O'Driscoll, ADAS

Summary

- What we need for improved biopesticide performance
- Filling gaps in knowledge on biofungicide persistence
- Benchmarking trial on aphids with EPF
- How modelling can help guide further trials
- Next steps in AMBER

What we need for improved biopesticide performance

- The right biopesticide(s) & application rate
- Used within an IPM programme
- In the right place
- Applied in the best way for crop architecture
- At the right application frequency
- At the right time need knowledge on pest/disease biology, biopesticide mode of action & conditions needed, speed of kill, persistence

Understanding biofungicide persistence

- AQ10 (Ampelomyces quisqualis) against powdery mildews on protected crops
- When conditions conducive to mildew, or below 3% leaf area mildewed
- Up to 12 applications
- Repeat every 7-10 days
- Prestop (*Gliocladium catenulatum*) on all protected crops & outdoor strawberry EAMU2843 of 2018 for outdoor
- *Botrytis* & *Didymella* on leaves/stems, three applications at minimum 7 day interval
- *Phytophthora, Pythium, Rhizoctonia* & *Fusarium spp.* as drenches, 4-6 wks repeat

Understanding biofungicide persistence

- How long do these beneficial fungi persist / remain viable in the crop after spraying?
- What conditions improve their persistence?
- What spore concentration (cfus) needs to be present for effective control?
- A literature review for AMBER determined there has been surprisingly limited research looking at survival over time on foliage of *G. catenulatum* & *A. quisqualis* & how this affects efficacy

Literature review Key viability/persistence factors

Parameter	Prestop	AQ10	Serenade ASO
Humidity (optimum)	85-95% RH	90-95% RH (possibly 70% after 48h)	76-98%
UV sensitivity	UV-B reduced viability by 40%	No specific info on UV	No specific info on UV
Temperature activity range (optimum)	6 - 30°C (20 – 25°C)	12 - 30°C (25°C)	11 - 52°C (25 - 35°C)
Survival period on foliage minus target disease	Unclear; maybe 3-4 weeks	Unclear; "within a few days"	5 days

Investigating AQ10 & Prestop persistence

- To investigate persistence of Prestop & AQ10 on foliage in the absence of a target disease
- Tomato used as a model crop
- Controlled environment conditions at 25 °C & 95% RH
- Leaves sampled at intervals, biofungicide spores washed off, cultured & viable colonies counted on agar plates

Prestop - survival period

- *G. catenulatum* still viable 14 days after Prestop foliar spray in the absence of a disease host
- Initial decline at Day 1, increase at Day 7 possibly *G. catenulatum* multiplying on the leaves?

Prestop – competition & hyperparasitism

- Gliocladium catenulatum has fast growth & deprives pathogens of living space & nourishment
- Hyperparasitic, producing enzymes to break down pathogen cell walls

AQ10 - survival period

- Short persistence of AQ10 in the absence of powdery mildew
- Rapid decline in A. quisqualis from Day 1 to Day 4
- By Day 7 a viable population was virtually undetectable.

AQ10 – colony survival

Colonies after 8 day's growth on agar

Day 0Day 1Day 4Day 7

Sampling interval after spraying AQ10 onto foliage, showing few *Ampelomyces* colonies alive by Day 4

AQ10 - mycoparasitism

- Ampelomyces is a hyperparasite & so requires a host to feed on, reproduce and survive
- For 7-10 days it spreads in the powdery mildew hyphae, spore-producing conidiophores & mildew spores without killing it (latent phase)
- It then forms pycnidia in 2-4 days & the infect mildew cells die
- Ampelomyces releases its spores from the pycnidia it forms inside the parasitised mildew host structures

Biofungicide work in 2019 – Controlled environment cabinet

 To compare AQ10 spray timings at various stages in the development of powdery mildew infection

To determine;

- survival of *A. quisqualis*
- changes in powdery mildew coverage & visible
 A. quisqualis parasitism

Biofungicide work in 2019 – Nursery site

- Investigate Ampelomyces survival & visible powdery mildew parasitism on hebe & rosemary
- Compare the efficacy of AQ10 with and without an adjuvant
- Monitor the environmental conditions that lead to a powdery mildew outbreak using 30MHz temperature & humidity loggers

AMBER benchmarking trial - aphids on sweet pepper

Treatments against aphids

- Biological control parasites & predators applied by the nursery against aphids. The other treatments had this in addition
- Botanigard WP (*Beauvaria bassiana*) on-label against whitefly. However, laboratory tests have shown it causes aphid mortality
- Majestik (maltodextrin)
- Tank mix of Botanigard WP & Majestik. Certis suggest this for use against whitefly & so it was tried here against aphids

MAJESTIK

Numbers of aphids/leaf after 2 sprays at a 6 day interval

Conclusions

- Botanigard WP will infect and kill *Myzus persicae*
- However, aphids continue to reproduce until they die from the fungal infection
- In the pepper trial, aphid starting numbers were too high for Botanigard to be effective
- In another trial, WFT numbers were too low on pot mums for conclusive results
- Modelling suggested as a initial way to determine parameters of importance

How modelling can help

- Predict pest population build-up & control with biopesticides & so guide trials on optimum strategies
- Initial model for glasshouse whitefly (*Trialeurodes* vaporariorum) and tobacco whitefly (*Bemisia tabaci*) and EPFs (*Lecanicillium* and *Beauveria*)
- Use model to investigate effect of:

- Dose
- Different application timings and frequencies
- Different initial whitefly populations
- Different host plants

Boxcar model for glasshouse whitefly

- Simulates number of individuals at each life stage (train carriage)
- Tracks the maturation of individuals to next life stage (movement between carriages)
- Calculates numbers of new eggs laid per day
- Individuals lost to natural mortality
- Simulates applications of EPF (frequency & timing) and control efficacy (persistence, mortality & speed of kill)

Glasshouse whitefly parameter values

21°C on tomato

Parameter	Value	Temperature dependent
Egg development time	8.1	Yes
1st instar development time	4.5	Yes
2nd instar development time	3.3	Yes
3rd instar development time	3.5	Yes
4 instar + prepupa + pupa development time	8.7	Yes
Adult longevity	39.2	Yes
Egg survival (%)	96.3	No but can adjust for extremes
1st instar survival (%)	95.8	No but can adjust for extremes
2nd instar survival (%)	97.4	No but can adjust for extremes
3rd instar survival (%)	96.3	No but can adjust for extremes
4 instar + prepupa + pupa survival (%)	92.7	No but can adjust for extremes
Adult survival (%)	96.4	No
♀ sex ratio	0.483	No
Pre-oviposition period (days)	1.3	Yes
Oviposition frequency (eggs/day)	6.7	Yes

Predicted whitefly population growth rate at different starting populations

Maximum population size = 10,000,000

Effect of EPF infection efficacy on whitefly growth (using dummy data)

* = Unable to eradicate. Pest population reaches 10m after 92 days

Effect of EPF persistence on whitefly growth (using dummy data)

* = Unable to eradicate. Pest population reaches 10m after 97 days

Effect of EPF speed of kill on whitefly growth (using dummy data)

Effect of initial population size on EPF efficacy (using dummy data)

Effect of spray programme start date on EPF efficacy (using dummy data)

Effect of spray frequency on EPF efficacy (using dummy data)

reaches 10m after 143 days

Future work in AMBER

- Select the most promising parameter to validate in trials e.g. starting pest population
- Validation of whitefly model predictions
- Create a model for Myzus persicae
- Lab work completion on EPFs of *M. persicae*
- Consider botanical biopesticides' performance
- Further work on biofungicide persistence & recommendations to growers, utilising results from AMBER & other AHDB projects which have tested their efficacy

Thanks to:

- Levy payers & AHDB Horticulture
- Host growers
- AMBER team members

